116 research outputs found

    Non-Commutative Correction to Thin Shell Collapse in Reissner Nordstroš\ddot{o}m Geometry

    Full text link
    This paper investigates the polytropic matter shell collapse in the non-commutative Reissner-Nordstroš\ddot{o}m geometry. Using the Israel criteria, equation of motion for the polytropic matter shell is derived. In order to explore the physical aspects of this equation, the most general equation of state, p=kρ(1+1n)p=k{\rho}^{({1+\frac{1}{n}})}, has been used for finite and infinite values of nn. The effective potentials corresponding to the equation of motion have been used to explain different states of the matter shell collapse. The numerical solution of the equation of motion predicts collapse as well as expansion depending on the choice of initial data. Further, in order to include the non-commutative correction, we modify the matter components and re-formulate the equation of motion as well as the corresponding effective potentials by including non-commutative factor and charge parameter. It is concluded that charge reduces the velocity of the expanding or collapsing matter shell but does not bring the shell to static position. While the non-commutative factor with generic matter favors the formation of black hole.Comment: 18 pages,17 figure

    Strong field limit analysis of gravitational retro-lensing

    Full text link
    We present a complete treatment in the strong field limit of gravitational retro-lensing by a static spherically symmetric compact object having a photon sphere. The results are compared with those corresponding to ordinary lensing in similar strong field situations. As examples of application of the formalism, a supermassive black hole at the galactic center and a stellar mass black hole in the galactic halo are studied as retro-lenses, in both cases using the Schwarzschild and Reissner-Nordstrom geometries.Comment: 11 pages, 1 figure; v2: minor changes. Accepted for publication in Physical Review

    Quasi-Equatorial Gravitational Lensing by Spinning Black Holes in the Strong Field Limit

    Get PDF
    Spherically symmetric black holes produce, by strong field lensing, two infinite series of relativistic images, formed by light rays winding around the black hole at distances comparable to the gravitational radius. In this paper, we address the relevance of the black hole spin for the strong field lensing phenomenology, focusing on trajectories close to the equatorial plane for simplicity. In this approximation, we derive a two-dimensional lens equation and formulae for the position and the magnification of the relativistic images in the strong field limit. The most outstanding effect is the generation of a non trivial caustic structure. Caustics drift away from the optical axis and acquire finite extension. For a high enough black hole spin, depending on the source extension, we can practically observe only one image rather than two infinite series of relativistic images. In this regime, additional non equatorial images may play an important role in the phenomenology.Comment: 13 pages, 9 figures. Improved version with detailed physical discussio

    A comparison of approximate gravitational lens equations and a proposal for an improved new one

    Full text link
    Keeping the exact general relativistic treatment of light bending as a reference, we compare the accuracy of commonly used approximate lens equations. We conclude that the best approximate lens equation is the Ohanian lens equation, for which we present a new expression in terms of distances between observer, lens and source planes. We also examine a realistic gravitational lensing case, showing that the precision of the Ohanian lens equation might be required for a reliable treatment of gravitational lensing and a correct extraction of the full information about gravitational physics.Comment: 11 pages, 6 figures, to appear on Physical Review

    On the exact gravitational lens equation in spherically symmetric and static spacetimes

    Full text link
    Lensing in a spherically symmetric and static spacetime is considered, based on the lightlike geodesic equation without approximations. After fixing two radius values r_O and r_S, lensing for an observation event somewhere at r_O and static light sources distributed at r_S is coded in a lens equation that is explicitly given in terms of integrals over the metric coefficients. The lens equation relates two angle variables and can be easily plotted if the metric coefficients have been specified; this allows to visualize in a convenient way all relevant lensing properties, giving image positions, apparent brightnesses, image distortions, etc. Two examples are treated: Lensing by a Barriola-Vilenkin monopole and lensing by an Ellis wormhole.Comment: REVTEX, 11 pages, 12 eps-figures, figures partly improved, minor revision

    Gravitational lensing in the strong field limit

    Get PDF
    We provide an analytic method to discriminate among different types of black holes on the ground of their strong field gravitational lensing properties. We expand the deflection angle of the photon in the neighbourhood of complete capture, defining a strong field limit, in opposition to the standard weak field limit. This expansion is worked out for a completely generic spherically symmetric spacetime, without any reference to the field equations and just assuming that the light ray follows the geodesics equation. We prove that the deflection angle always diverges logarithmically when the minimum impact parameter is reached. We apply this general formalism to Schwarzschild, Reissner-Nordstrom and Janis-Newman-Winicour black holes. We then compare the coefficients characterizing these metrics and find that different collapsed objects are characterized by different strong field limits. The strong field limit coefficients are directly connected to the observables, such as the position and the magnification of the relativistic images. As a concrete example, we consider the black hole at the centre of our galaxy and estimate the optical resolution needed to investigate its strong field behaviour through its relativistic images.Comment: 10 pages, 5 figures, in press on Physical Review

    Gravitational lensing by a charged black hole of string theory

    Full text link
    We study gravitational lensing by the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole of heterotic string theory and obtain the angular position and magnification of the relativistic images. Modeling the supermassive central object of the galaxy as a GMGHS black hole, we estimate the numerical values of different strong-lensing parameters. We find that there is no significant string effect present in the lensing observables in the strong-gravity scenario.Comment: 6 page

    Gravitational and electromagnetic fields of a charged tachyon

    Full text link
    An axially symmetric exact solution of the Einstein-Maxwell equations is obtained and is interpreted to give the gravitational and electromagnetic fields of a charged tachyon. Switching off the charge parameter yields the solution for the uncharged tachyon which was earlier obtained by Vaidya. The null surfaces for the charged tachyon are discussed.Comment: 8 pages, LaTex, To appear in Pramana- J. Physic

    Reissner-Nordstrom black hole lensing

    Get PDF
    In this paper we study the strong gravitational lensing scenario where the lens is a Reissner-Nordstrom black hole. We obtain the basic equations and show that, as in the case of Schwarzschild black hole, besides the primary and secondary images, two infinite sets of relativistic images are formed. We find analytical expressions for the positions and amplifications of the relativistic images. The formalism is applied to the case of a low-mass black hole placed at the galactic halo.Comment: 16 pages, 5 figure

    Energy Distribution in f(R) Gravity

    Full text link
    The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.Comment: 15 pages, accepted for publication in Gen. Relativ. & Gra
    • 

    corecore